
Pi Calculator

Maxim Veytsman

June 7, 2001

1 Introduction and Calculations

1.1 The Monte Carlo Method

This article aims to create a program that can calculate π using the Monte
Carlo1 method. The Monte Carlo method is a simple way of calculating
values (such as a value like π) by using random numbers. For Pi, it works
like this, there is a square dart board with each side 2 units in length, on
which is a circle with a radius of 1 unit. A person starts throwing darts at
the board, if they miss the board it is not counted, if they hit the circle they
get a point. e

1.2 Calculating Pi

First of all, let’s calculate the probability of the dart landing in the circle.
The area of the circle is calculated by the formula A1 = πr2 Since r = 1, we
get A1 = π. The formula for the area of a square is A2 = l2, since l = 2,
A2 = 4. Now the probability of the dart landing in the circle2 is A1

A2
, this

can also be written as π
4
. We now know that the probability of the dart

landing in the square is 4π, so we can calculate π by simulating this action
and multiplying the probability by 4.

1Monte Carlo is a large casino city in Europe similar to Las Vegas.
2This is assuming we only count the shots that land in the square

1

1.3 Did it Land in the Circle

In order to calculate the dart’s coordinates, we must imagine the square board
as a coordinate plane, the center of the square is (0,0). In order to see if the
dart is in the circle we must measure the distance between the coordinates
of the dart and (0,0), the radius. The distance can be calculated using the
Pyphagorian Theorem. Let’s draw a rectangle whose 2 sides are the distances
between the coordinate of the dart and (0,0) on x and y. We then draw a line
from the point where the dart landed to (0,0), and use this as the hypotenuse
of a triangle formed by 2 of the rectangles sides. The Pyphagorian Theorem
states that A2 + B2 = C2. Which in terms or coordinates would mean that
r2 = x2 + y2. So to see if the dart has landed in the circle, we put both of
it’s coordinates in the power of 2, add the results and see if it is less than 1.

2 Simulating the Dart Throwing

2.1 Commented Code

In the previous section we figured out how to calculate π using the method.
Here we will write a perl script to simulate throwing darts at a board.

1 #!/usr/bin/perl
2 use strict ;
3 my ($cycles, $i , $yespi , $pi) = 0;

Here we tell the computer we are using perl, then declare a few variables3.
’$cycles’ is the amount of times we throw the dart, ’$i’ is a counter for the
amount of times we throw the dart, ’$yespi’ records the amount of times the
dart landed in the circle, and ’$pi’ is the value of π. For now, all of these are
set to 0.

4 srand;
5 print ”Please enter the amount of cycles:”;
6 chomp($cycles = <STDIN>);

We start out by telling the computer that each time we ask for a random
number, it will do an opperation to the current time to get a number in the
range we set, this is called by ’srand;’. We then ask the the user for the
amount of times the dart will be thrown and record this number as ’$cycles’.

3For the purpose of this article, all variables begin with ’$’.

2

7 while ($i <= $cycles) {
8 my ($x, $y, $cdnt) = 0;
9 $x = rand;

10 $y = rand;
11 $cdnt = $x∗∗2 + $y∗∗2;
12 if ($cdnt <= 1) {
13 ++$yespi;
14 }
15 ++$i;
16 }

The first part of this chunk of code starts a while loop, this means that ev-
erything between the ’{’ and ’}’ will be repeated until the conditions between
the ’′and′’ are no longer met. We declare the variable ’$cdnt’ which is the dis-
tance between the dart and (0,0), ’$x’ which is the x coordinate of the dart,
and ’$y’ which is the y coordinate of the dart. The x and why coordinates are
assigned random values between 0 and 14, and calculate the distance between
the dart’s coordinate and (0,0) using the Pyphagorian Theorem. Then we
call an if statement, if the variable ’$cdnt’ is less than or equal to 1, we add
1 to the number of times the dart landed in the circle using the statement
’++$yespi’. The last statement adds 1 to the counter. This is so the loop
will only repeat itself the amount of times the user specified, because ’$i’ will
eventually be greater than ’$cycles’ and the loop won’t occur.

17 $pi = ($yespi / $cycles) ∗ 4;
18 print ”Pi is $pi\n”;

This last chunk assign 4A1

A2
to ’$pi’ to get π. It then prints the phrase “Pi is

[the value of the variable ’$pi’]” to standard output (the screen).

2.2 Uncommented Code

Here is the full, uninterrupted code:

1 #!/usr/bin/perl
2 use strict ;
3 my ($cycles, $i , $yespi , $pi) = 0;
4 srand;

4This limits the results to only the I quadrant, but since this is a fraction, dividing
each side by 4 will not effect the result.

3

5 print ”Please enter the amount of cycles:”;
6 chomp($cycles = <STDIN>);
7 while ($i <= $cycles) {
8 my ($x, $y, $cdnt) = 0;
9 $x = rand;

10 $y = rand;
11 $cdnt = $x∗∗2 + $y∗∗2;
12 if ($cdnt <= 1) {
13 ++$yespi;
14 }
15 ++$i;
16 }
17 $pi = ($yespi / $cycles) ∗ 4;
18 print ”Pi is $pi\n”;

3 Conclusion

3.1 Accuracy

I found this method to be accurate at over 10,000 cycles.

3.2 The value of Pi

After 1,000,000 cycles, the program said that π is equal to 3.142025, as com-
pared to the real value: 3.14159.

3.3 To Do

• Add graphic of radius and of the dart board

• Add graph of the change in accuracy as the amount of cycles changes

5This value changes every time the program is run, because the program uses random
values.

4

